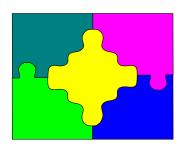
Defense Contract Management Command


Processes and Process Proofing

JULY 1999/REV. -

Workshop Content

- What is a Process
- Process Structures/Families/Etc.
- Identify Processes
- Determining Key Processes and Risk
- Prioritizing/Selecting a Process for Proofing
- Who, What, When and Why Proofing
- Understanding the Process HOW
 - Identifying the Requirements
 - Assessing Inputs
 - Flowing the Process
- Assessing the Process as Defined
- **Proofing Questions**
- Assess Outputs
- **Document Proofing Efforts**
- Utilizing Proofing Results
- Summary

What is a Process?

"The combination of people, equipment, materials, methods and environments that produce output--given product or service. A process can involve any aspect of a business...(2) a planned series of actions of operations which advances material or procedure from one stage of completion to another, (3) a planned and controlled treatment..."

Source: DSMC Glossary Defense Acronyms & Terms

Typical Process

VALUE ADDED

Inputs

Personnel
Methods
Materials
Environment
Equipment
Information

Process X

Identify the key activity that must be performed in order to meet the process objectives and contract requirements

Requirements

Goods
Services
Reports
Products
Design
Schedule

Process Structure and Relationships

• Systems (or process families) and their subsystems are natural groupings of related processes and controls within a manufacturing/business system

• Process - a series of tasks leading to a common objective and satisfying a requirement

• Task - actions/steps taken by an individual leading to the completion of a process

Systems and Process Families

Program Planning and Control

Cost/Schedule Management

Engineering Change Management

Business Planning and Administration

Purchasing
Estimating
Contract Admin

Accounting Govt. Prop Material Mgt

Product Design and Definition

Systems Engineering
Design/Test Management
Software Development

Product Delivery

Manufact. Mgmt.
Quality Assur/System
Product Integrity/
Technical Requirements

Product Support

Provisioning
Warranty
Technical Data

Sub-Systems and Their Processes

Manufacturing Mgmt. Systems

Manufacturing Engineering

Manufacturing Planning

Facility Management

Work Measurement

Prod., Scheduling and Control

Packaging, Handling and Transport

Quality Assurance/System

Quality Control Planning

Work Instructions/Records

Nonconforming Supplies

Corrective Action

Supplier Quality Assurance

Metrology and Calibration

Subcontract Acquisition Management/Purchasing

Advanced Subcontract Planning Subcontract Negotiation or Award Subcontract Administration

Sub-Systems and Their Processes

(CONT.)

Contract Administration

Estimating
Forward Pricing Rate Agreements
Indirect Cost Control
Compensation

Engineering and Design Mgmt.

Software Development
Test Management
Performance Management
Configuration
Program Management

Property Management

Property Acquisition
Receiving
Inventory Control
Utilization & Consumption

Allocability

Disposition

Maintenance

System: Sub-System: Process: Tasks

Support & Direct Processes

SUPPORT PROCESSES

SYSTEMS ENGINEERING

DIRECT PROCESSES

METROLOGY

S/W CODE MACHINING

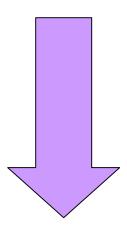
HEAT TREAT

SOLDERING

AUDITS

CONFIGURATION MANAGEMENT

Identifying Processes


Review Contract and related documents

- SOW, Drawings, Test and Performance
 Specs, CDRLs and Schedules
- Review Contractor's Documents
 - Procedures, Method Sheets, Work
 Instructions, P.O.s, Work Orders,
 Flowcharts, Control Plans
- Become Familiar with the Facility, Systems and Products

Identifying Processes

- Quality System Processes (Commonly found at most Contractor Facilities)
 - Receiving & Reviewing Contract Information
 - Purchasing
 - Maintaining/Calibrating Equip and Tools
 - Control of Drawings
 - Production Planning and Control
 - Performing Operational Functions/ Mfg.
 - Inspecting/Reviewing Output

After Identifying Processes Next Step

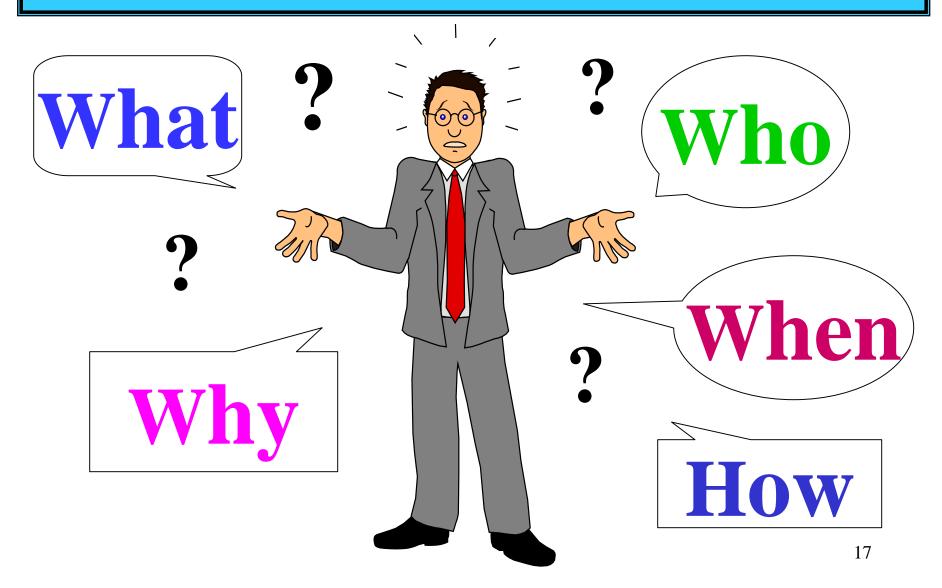
Select Key Processes

Assess Risk

Key Process

SIGNIFICANT AFFECT ON PRODUCT/CONTRACT TECHNICAL PERFORMANCE, COST AND SCHEDULE

Processes determined to be of a critical nature are identified/labeled as *Key Processes*


Process Risk Assessment

- Each Key Process Is Risk Classified
- Based on Data Analysis Sources: Customer, DCMC, Second Party and Contractor (Consider: history, capacity, capability, maturity and contractor responsiveness)
- Three Risk Levels High, Moderate and Low
- Use Team Approach to Decision Making

Selecting and Prioritizing a Process for Proofing

- Identified as KEY PROCESS(Critical)
- Processes identified as High Risk
 - Assess Relative Severity of Risk Consider:
 - » Criticality of Process/Impact on End Item
 - » Process Complexity
 - » Process Controls
 - » Process Maturity
 - » Process Performance
 - » Visibility and Customer Needs

- Who All functional Technical Specialists can do Process Proofing (may be done as a team)
- What Comprehensive Audit of Process Inputs,
 Steps and Outputs
- When -
 - Conducted on all previously identified high risk key processes IAW prioritized list
 - May be conducted on all moderate level processes- to help establish confidence
 - Conducted when significant changes may affect process output (reproofing)

Why

To provide confidence in a contractor's process to produce the desired outcome

- To identify reasons for high risk rating leading to correction or improvement
- Develop improvement topics/opportunities for PROCAS & Management Councils
- Helps reduce reliance on inspection

How

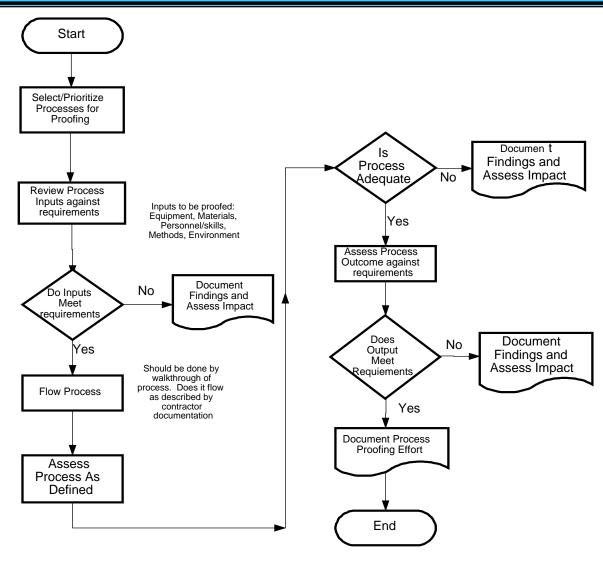
- Identify Contractual Requirements governing the process
- Identify Process Inputs and Conduct a Comprehensive Review of Inputs:
 - Methods
 - Materials
 - Equipment
 - Personnel/Skills
 - Environment
 - Information

Do they conform to <u>cost</u>, <u>schedule</u> and <u>technical</u> contractual requirements?

Can they be enhanced to improve the process?

"Understanding the Process"

or

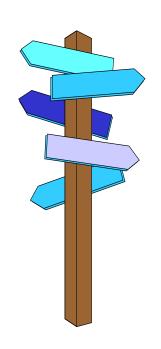

"Gaining Profound Knowledge"

•How

- -NO ONE WAY TO PROOF A PROCESS
- Your method/steps of proofing will depend to some extent on:
 - contractor's system of documenting efforts
 - your familiarity with the process
- May identify contractual requirements first or flowchart/sequence the events first or review inputs first or use blended approach

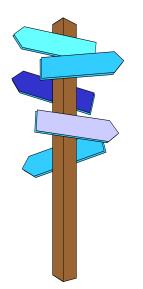

Process Proofing Flowchart or Guide

"How" - One Approach


Process Proofing Flow

Could just as easily look like this

•How - review process inputs against requirements


-One Approach

- » Begin with Methods (one of the process *inputs*)
- » Determine governing contractual cost, schedule and technical requirements
- » Assure contract requirements are flowed into/reflected in contractor methods
- » In other words: Review Contractor's Methods, e.g.; procedures, work instructions, manuals, etc., against contractual requirements, e.g.; Mil-Q, ISO 9000 Standards, Mil-Specs, Commercial Standards

•HOW - review process inputs against requirements

Through reviewing/evaluating contractor methods you will be identifying other *requirements* and *inputs*

- » **Materials** e.g.; type of materials (hazmat), traceability, availability(stock, order, make or buy, lead-times, vendors)
- » **Personnel/skills** e.g.; training, years of experience, license, certification status
- » **Equipment** e.g.; type (on hand, acquire or furnished), calibration, capability, capacity, condition
- » **Environment** e.g.; clean-room, atmosphere controlled, EPA, safety
- » **Information** e.g.; third party, contractor, government and/or customer records, data
- Assure inputs are correctly/adequately addressed in methods (contractor's documents)

Typical Process

Inputs

Personnel
Methods
Materials
Environment
Equipment
Information

Process X

Identify the key activity that must be performed in order to meet the process objectives and contract requirements

Requirements

Outputs

Goods
Services
Reports
Products
Design
Schedule

PROCESS EXAMPLE

Fuel Containment System Sealing

To achieve a leak free containment system, three critical elements are involved. The first is the cleaning process to ensure proper sealant adhesion; the second is the selection of the proper sealant for application; the third is the application of the sealant.

- -Certified Techs
- -Work Instruct.
- -Materials

- Cleaning Process surface preparation
- Selection of Sealant
- Sealant Application:
 Tank entry constraints
 Methods of application
 Environmental controls
 Inspection time

OUTPUT

-Leak Free Fuel Containment System

PROCESS EXAMPLE

Configuration Management Process

Definition: Change (configuration) Control. Establishment and implementation of a plan to ensure configuration control while documenting design, hardware, and procedural changes.

Configuration Identification Configuration Control Configuration Status Accounting Configuration Audits Drawings

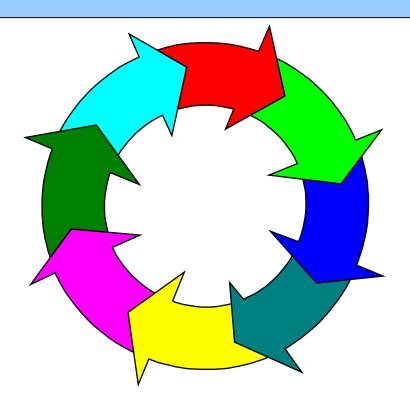
Requirements
Specifications:
DoD-STD-100C,
Mil-Std-973 or commercial
equivalents

PROCESS INFORMATION

Review and evaluate per requirements: Contract/SOW, authenticated spec and applicable approved plans.

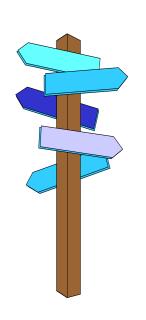
- -Establish item/system baseline
- -Manage and Control Changes
- -Maintain current status and reports
- -Perform reviews and audits...FCA/PCA

OUTPUT

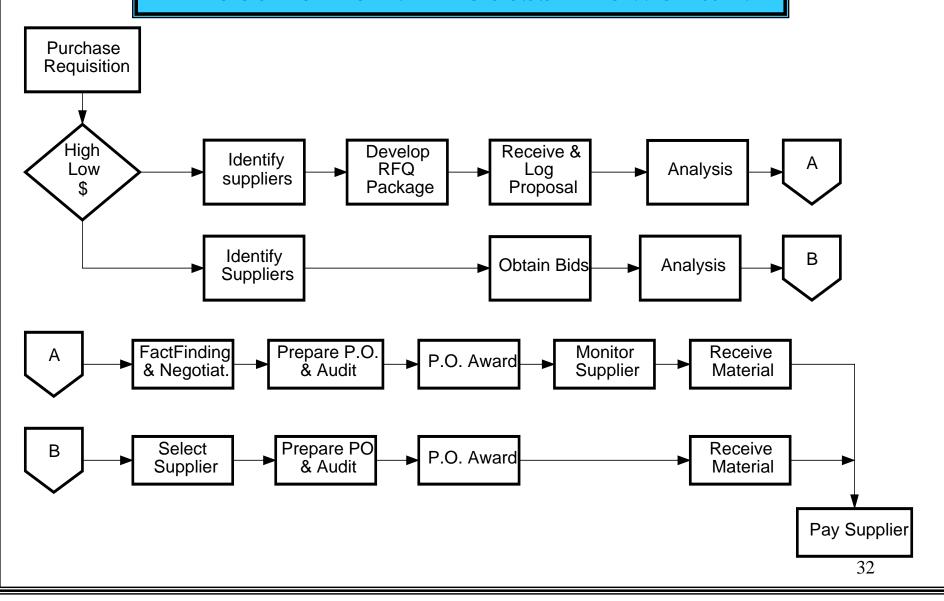

Logistics supportability

CI and documents for govt. control and contractor mgmt.

Report Certification for CI/FCA/PCA


While gaining knowledge about/reviewing the process/inputs -You will also be

FLOWING THE PROCESS


Flowing The Process

•How

- » Can develop a flow chart or use a sequence of events (list of process operations or steps) or use contractor's flowchart (must verify accuracy)
- » Develop flowchart Walkthrough process
- » Does it flow as described by contractor documentation?
- » If differences in written procedures and in practice must take action (discuss with contractor, possibly issue CAR/CIO)

Procurement Process Flowchart

Understanding the Process

- -Identified Requirements
- -Flowed the Process
- -Evaluated Contractor's Inputs (as reflected in Methods)

Assess Process as Defined

Assess Process as Defined

(Against Requirements)

- Requires physical evaluation or monitoring of:
 - work in progress
 - verification of inputs in use
 - evaluating outputs of process activities/steps

Proofing Questions

Methods

- Are methods adequate to produce conforming products
- Are changes to these methods translated adequately and in a timely manner
- Methods may include, but are not limited to: Work
 Instructions, Travelers, Procedures, Method Sheets

- Examples:

- Are work instructions available and up to date
- Is work accomplished IAW WI or are short cuts utilized and not annotated
- Are all documents completed as required evaluate samples

Proofing Questions

Environment

- Are the processes conducted under controlled conditions IAW requirements
- Can these always be controlled
- Safety personnel/equipment available if needed

Examples:

- Are temperature and humidity gages within limits and are they calibrated and records available
- Clean Room is all protective clothing being worn

Personnel/Skills

- Do the people have the required skill level
- Does the contractor have a method to train personnel
- Do the people have the proper certifications

Examples:

- Are training records available, review samples
- Are instructor credentials maintained, review
- Do they have a notification system for certification expiration dates

Materials

- Does the material(s) meet all contractual and/or contractor imposed technical requirements
- Does the contractor have a method to assure the correct material is always used
- Is material traceable as required

Examples:

- Are proper materials are being utilized on the floor
- Are materials properly identified

• Equipment

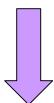
- Is the equipment the proper accuracy
- Is it included in the calibration program
- Does any equipment require certification/qualification

Examples:

- Is out of calibration equipment properly identified
- Are tooling fixtures properly identified and stored
- Are parameters appropriately set, e.g.; heat settings, etc.

Information

- •Is information pertinent
- •Is information accurate
- •Is information timely
- •Is information validated



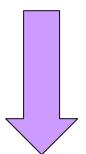
•Example:

- •Do Purchase Orders have complete description of product ordered
- Are delivery forecasts maintained and updated
- •Are engineering drawings updated
- •Is data correctly recorded, maintained and used

After Assessing Process as Defined

Next Step

Assess Process Output


Against

Requirements

Assess Process Output Against Requirements

- Sample Process Output, i.e.; product against the requirements and verify compliance
 - Examples:
 - Review Purchase Orders as a product of the Purchasing Process
 - Inspect manufactured items as product of a manufacturing process such as soldering, welding, coating, machining, painting, etc.
 - Review MRB documents as one of the products of the NCM Process

After Assessing the Output

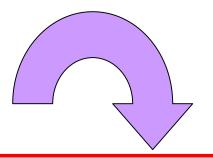
Document

Process Proofing

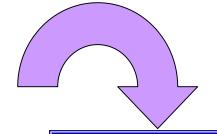
Efforts

Documenting the Proofing Effort

- Process proofing documentation should be of sufficient detail to:
 - Answer the questions: Who? What? When? Where?
 How?
 - Documentation should describe: the process requirements, inputs, and steps; the methods used to evaluate them; the results of the evaluation; and any follow-up action necessary


Simple Check Sheets are Insufficient

Utilizing Process Proofing Results


- Used to Identify Weaknesses in a High Risk Process (CARs/CIOs)
- Used to Identify Areas for Improvement
- May be used to Establish Confidence in Processes Rated as Moderate Risk
- Used to Adjust Plan and Redirect Resources

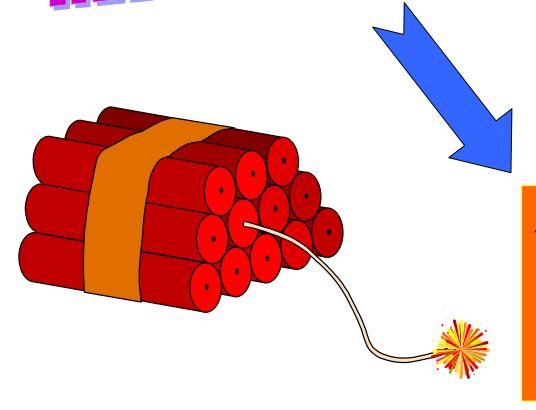
Adjusting Surveillance Plan

Proofing Results

Risk Level Adjustments

Adjustment to Surveillance Techniques

Adjusting Surveillance Techniques

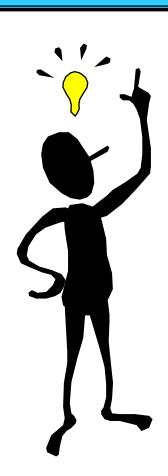

Data Collection

- Increase or decrease data/reports collected and analyzed
- Establish new points for data collection
- Product Audit Points (process measurement)
 - Eliminate or add PA points
 - Reduce or increase frequency and/or intensity

Identifying Process Improvement

- Reduce variability, defects & costs
- Increase process capability, effectiveness, & productivity and on time delivery
- Increase customer satisfaction
 - "Total quality control is an effective system for integrating the quality-development, quality-maintenance, and quality-improvement efforts of the various groups in an organization so as to enable production and service at the most economical levels which allow for full customer satisfaction"

REDIRECT RESOURCES


DANGER
HIGH
RISK
AREA

Process Proofing

Summary

&

Discussion

